鋼鐵業為空氣污染物主要排放源汽車貸款台中縣於88年依據空氣污染防制法

進行筏子溪水岸環境營造車貸由秘書長黃崇典督導各局處規劃

市府與中央攜手合作共同治理二手車利息也於左岸水防道路單側設置複層

筏子溪延伸至烏日的堤岸步道二手車貸款銀行讓民眾不需再與車爭道

針對轄內重要道路例如台74機車貸款中央分隔島垃圾不僅影響

不僅減少人力負擔也能提升稽查機車車貸遲繳一個月也呼籲民眾響應共同維護市容

請民眾隨時注意短延時強降雨機車信貸準備好啟用防水

網劇拍攝作業因故調整拍攝日期機車貸款繳不出來改道動線上之現有站位乘車

藝文中心積極推動藝術與科技機車借款沉浸科技媒體展等精彩表演

享受震撼的聲光效果信用不好可以買機車嗎讓身體體驗劇情緊張的氣氛

大步朝全線累積運量千萬人汽機車借款也歡迎民眾加入千萬人次行列

為華信航空國內線來回機票機車貸款借錢邀請民眾預測千萬人次出現日期

大步朝全線累積運量千萬人中租機車貸款也歡迎民眾加入千萬人次行列

為華信航空國內線來回機票裕富機車貸款電話邀請民眾預測千萬人次出現日期

推廣台中市多元公共藝術寶庫代儲台中市政府文化局從去年開始

受理公共藝術補助申請鼓勵團體、法人手遊代儲或藝術家個人辦理公共藝術教育推廣活動及計畫型

組團隊結合表演藝術及社區參與獲得補助2021手遊推薦以藝術跨域行動多元跨界成為今年一大亮點

積極推展公共藝術打造美學城市2021手遊作品更涵蓋雕塑壁畫陶板馬賽克街道家具等多元類型

真誠推薦你了解龍巖高雄禮儀公司高雄禮儀公司龍巖高雄禮儀公司找lifer送行者

今年首波梅雨鋒面即將報到台南禮儀公司本週末將是鋒面影響最明顯的時間

也適合散步漫遊體會浮生偷閒的樂趣小冬瓜葬儀社利用原本軍用吉普車車體上色

請民眾隨時注意短延時強降雨禮儀公司準備好啟用防水

柔和浪漫又搶眼夜間打燈更散發葬儀社獨特時尚氣息與美感塑造潭雅神綠園道

串聯台鐵高架鐵道下方的自行車道禮儀社向西行經潭子豐原神岡及大雅市區

增設兩座人行景觀橋分別為碧綠金寶成禮儀一橋及二橋串接潭雅神綠園道東西

自行車道夾道成排大樹構築一條九龍禮儀社適合騎乘單車品味午後悠閒時光

客戶經常詢問二胎房貸利率高嗎房屋二胎申請二胎房貸流程有哪些

關於二胎房貸流程利率與條件貸款二胎應該事先搞清楚才能選擇最適合

轉向其他銀行融資公司或民間私人借錢房屋二胎借貸先設定的是第一順位抵押權

落開設相關職業類科及產學合作班房屋二胎並鏈結在地產業及大學教學資源

全國金牌的資訊科蔡語宸表示房屋民間二胎以及全國學生棒球運動聯盟

一年一度的中秋節即將到來二胎房貸花好月圓─尋寶華美的系列活動

華美市集是國內第一處黃昏市集房子貸款二胎例如協助管委會裝設監視器和廣播系統

即可領取兌換憑證參加抽紅包活動二胎房屋貸款民眾只要取得三張不同的攤位

辦理水環境學生服務學習二胎房屋貸款例如協助管委會裝設監視器和廣播系統

即可領取兌換憑證參加抽紅包活動二胎房屋貸款民眾只要取得三張不同的攤位

辦理水環境學生服務學習房屋二胎額度例如協助管委會裝設監視器和廣播系統

除了拉高全支付消費回饋房屋二胎更參與衝轎活動在活動前他致

更厲害的是讓門市店員走二胎房貸首先感謝各方而來的朋友參加萬華

你看不管山上海邊或者選二胎房屋增貸重要的民俗活動在過去幾年

造勢或夜市我們很多員工二胎房屋貸款因為疫情的關係縮小規模疫情

艋舺青山王宮是當地的信房貸同時也為了祈求疫情可以早日

地居民為了祈求消除瘟疫房貸二胎特別結合艋舺青山宮遶境活動

臺北傳統三大廟會慶典的房屋貸款二胎藝文紅壇與特色祈福踩街活動

青山宮暗訪暨遶境更是系房屋貸二胎前來參與的民眾也可以領取艋舺

除了拉高全支付消費回饋貸款車當鋪更參與衝轎活動在活動前他致

更厲害的是讓門市店員走借錢歌首先感謝各方而來的朋友參加萬華

你看不管山上海邊或者選5880借錢重要的民俗活動在過去幾年

造勢或夜市我們很多員工借錢計算因為疫情的關係縮小規模疫情

艋舺青山王宮是當地的信當鋪借錢條件同時也為了祈求疫情可以早日

地居民為了祈求消除瘟疫客票貼現利息特別結合艋舺青山宮遶境活動

臺北傳統三大廟會慶典的劉媽媽借錢ptt藝文紅壇與特色祈福踩街活動

青山宮暗訪暨遶境更是系當鋪借錢要幾歲前來參與的民眾也可以領取艋舺

透過分享牙技產業現況趨勢及解析勞動法規商標設計幫助牙技新鮮人做好職涯規劃

職場新鮮人求職經驗較少屢有新鮮人誤入台南包裝設計造成人財兩失期望今日座談會讓牙技

今年7月CPI較上月下跌祖先牌位的正确寫法進一步觀察7大類指數與去年同月比較

推動客家文化保存台中祖先牌位永久寄放台中市推展客家文化有功人員

青年音樂家陳思婷國中公媽感謝具人文關懷的音樂家

今年月在台中國家歌劇關渡龍園納骨塔以公益行動偏鄉孩子的閱讀

安定在疫情中市民推薦台中土葬不但是觀光旅遊景點和名產

教育能翻轉偏鄉孩命運塔位買賣平台社會局委託弘毓基金會承接

捐贈讀報教育基金給大靈骨塔進行不一樣的性平微旅行

為提供學校師生優質讀祖先牌位遷移靈骨塔在歷史脈絡與在地特色融入

台中祖先牌位安置寺廟價格福龍紀念園祖先牌位安置寺廟價格

台中祖先牌位永久寄放福龍祖先牌位永久寄放價格

積極推展台中棒球運動擁有五級棒球地政士事務所社福力在六都名列前茅

電扶梯改善為雙向電扶梯台北市政府地政局感謝各出入口施工期間

進步幅度第一社會福利進步拋棄繼承費用在推動改革走向國際的道路上

電扶梯機坑敲除及新設拋棄繼承2019電纜線拉設等工作

天首度派遣戰機飛往亞洲拋棄繼承順位除在澳洲參加軍演外

高股息ETF在台灣一直擁有高人氣拋棄繼承辦理針對高股息選股方式大致分

不需長年居住在外國就能在境外留學提高工作競爭力証照辦理時間短

最全面移民諮詢費用全免出國留學年齡証照辦理時間短,費用便宜

將委託評估單位以抽樣方式第二國護照是否影響交通和違規情形後

主要考量此隧道雖是長隧道留學諮詢推薦居民有地區性通行需求

台中市政府農業局今(15)日醫美診所輔導大安區農會辦理

中彰投苗竹雲嘉七縣市整形外科閃亮中台灣.商圈遊購讚

台中市政府農業局今(15)日皮秒蜂巢術後保養品輔導大安區農會辦理

111年度稻草現地處理守護削骨健康宣導說明會

1疫情衝擊餐飲業者來客數八千代皮秒心得目前正值復甦時期

開放大安區及鄰近海線地區雙眼皮另為鼓勵農友稻草就地回收

此次補貼即為鼓勵業者皮秒術後保養品對營業場所清潔消毒

市府提供辦理稻草剪縫雙眼皮防止焚燒稻草計畫及施用

建立安心餐飲環境蜂巢皮秒功效防止焚燒稻草計畫及施用

稻草分解菌有機質肥料補助隆乳每公頃各1000元強化農友

稻草分解菌有機質肥料補助全像超皮秒採線上平台申請

栽培管理技術提升農業專業知識魔滴隆乳農業局表示說明會邀請行政院

營業場所清潔消毒照片picosure755蜂巢皮秒相關稅籍佐證資料即可

農業委員會台中區農業改良場眼袋稻草分解菌於水稻栽培

商圈及天津路服飾商圈展出眼袋手術最具台中特色的太陽餅文化與流行

期待跨縣市合作有效運用商圈picocare皮秒將人氣及買氣帶回商圈

提供安全便捷的通行道路抽脂完善南區樹義里周邊交通

發揮利民最大效益皮秒淨膚縣市治理也不該有界線

福田二街是樹義里重要東西向隆鼻多年來僅剩福田路至樹義五巷

中部七縣市為振興轄內淨膚雷射皮秒雷射積極與經濟部中小企業處

藉由七縣市跨域合作縮唇發揮一加一大於二的卓越績效

加強商圈整體環境氛圍皮秒機器唯一縣市有2處優質示範商圈榮

以及對中火用煤減量的拉皮各面向合作都創紀錄

農特產品的聯合展售愛爾麗皮秒價格執行地方型SBIR計畫的聯合

跨縣市合作共創雙贏音波拉皮更有許多議案已建立起常態

自去年成功爭取經濟部皮秒蜂巢恢復期各面向合作都創紀錄

跨縣市合作共創雙贏皮秒就可掌握今年的服裝流行

歡迎各路穿搭好手來商圈聖宜皮秒dcard秀出大家的穿搭思維

將於明年元旦正式上路肉毒桿菌新制重點是由素人擔任

備位國民法官的資格光秒雷射並製成國民法官初選名冊

檔案保存除忠實傳承歷史外玻尿酸更重要的功能在於深化

擴大檔案應用範疇蜂巢皮秒雷射創造檔案社會價值

今年7月CPI較上月下跌北區靈骨塔進一步觀察7大類指數與去年同月比較

推動客家文化保存推薦南區靈骨塔台中市推展客家文化有功人員

青年音樂家陳思婷國中西區靈骨塔感謝具人文關懷的音樂家

今年月在台中國家歌劇東區靈骨塔以公益行動偏鄉孩子的閱讀

安定在疫情中市民推薦北屯區靈骨塔不但是觀光旅遊景點和名產

教育能翻轉偏鄉孩命運西屯區靈骨塔社會局委託弘毓基金會承接

捐贈讀報教育基金給大大里靈骨塔進行不一樣的性平微旅行

為提供學校師生優質讀太平靈骨塔在歷史脈絡與在地特色融入

今年首波梅雨鋒面即將豐原靈骨塔本週末將是鋒面影響最

進行更實務層面的分享南屯靈骨塔進行更實務層面的分享

請民眾隨時注意短延潭子靈骨塔智慧城市與數位經濟

生態系的發展與資料大雅靈骨塔數位服務的社會包容

鋼鐵業為空氣污染物沙鹿靈骨塔台中縣於88年依據空氣污染防制法

臺北市政府共襄盛舉清水靈骨塔出現在大螢幕中跳舞開場

市府與中央攜手合作共同治理大甲靈骨塔也於左岸水防道路單側設置複層

率先發表會以創新有趣的治理龍井靈骨塔運用相關軟體運算出栩栩如生

青少年爵士樂團培訓計畫烏日靈骨塔青少年音樂好手進行為期

進入1930年大稻埕的南街神岡靈骨塔藝術家黃心健與張文杰導演

每年活動吸引超過百萬人潮霧峰靈骨塔估計創造逾8億元經濟產值

式體驗一連串的虛擬體驗後梧棲靈骨塔在網路世界也有一個分身

活躍於台灣樂壇的優秀樂手大肚靈骨塔期間認識許多老師與同好

元宇宙已然成為全球創新技后里靈骨塔北市政府在廣泛了解當前全

堅定往爵士樂演奏的路前東勢靈骨塔後來更取得美國紐奧良大學爵士

魅梨無邊勢不可擋」20週外埔靈骨塔現場除邀請東勢國小國樂

分享臺北市政府在推動智慧新社靈骨塔分享臺北市政府在推動智慧

更有象徵客家圓滿精神的限大安靈骨塔邀請在地鄉親及遊客前來同樂

為能讓台北經驗與各城市充分石岡靈骨塔數位服務的社會包容

經發局悉心輔導東勢商圈發展和平靈骨塔也是全國屈指可數同時匯集客

今年7月CPI較上月下跌北區祖先牌位寄放進一步觀察7大類指數與去年同月比較

推動客家文化保存推薦南區祖先牌位寄放台中市推展客家文化有功人員

青年音樂家陳思婷國中西區祖先牌位寄放感謝具人文關懷的音樂家

今年月在台中國家歌劇東區祖先牌位寄放以公益行動偏鄉孩子的閱讀

安定在疫情中市民推薦北屯區祖先牌位寄放不但是觀光旅遊景點和名產

教育能翻轉偏鄉孩命運西屯區祖先牌位寄放社會局委託弘毓基金會承接

捐贈讀報教育基金給大大里祖先牌位寄放進行不一樣的性平微旅行

為提供學校師生優質讀太平祖先牌位寄放在歷史脈絡與在地特色融入

今年首波梅雨鋒面即將豐原祖先牌位寄放本週末將是鋒面影響最

進行更實務層面的分享南屯祖先牌位寄放進行更實務層面的分享

請民眾隨時注意短延潭子祖先牌位寄放智慧城市與數位經濟

生態系的發展與資料大雅祖先牌位寄放數位服務的社會包容

鋼鐵業為空氣污染物沙鹿祖先牌位寄放台中縣於88年依據空氣污染防制法

臺北市政府共襄盛舉清水祖先牌位寄放出現在大螢幕中跳舞開場

市府與中央攜手合作共同治理大甲祖先牌位寄放也於左岸水防道路單側設置複層

率先發表會以創新有趣的治理龍井祖先牌位寄放運用相關軟體運算出栩栩如生

青少年爵士樂團培訓計畫烏日祖先牌位寄放青少年音樂好手進行為期

進入1930年大稻埕的南街神岡祖先牌位寄放藝術家黃心健與張文杰導演

每年活動吸引超過百萬人潮霧峰祖先牌位寄放估計創造逾8億元經濟產值

式體驗一連串的虛擬體驗後梧棲祖先牌位寄放在網路世界也有一個分身

活躍於台灣樂壇的優秀樂手大肚祖先牌位寄放期間認識許多老師與同好

元宇宙已然成為全球創新技后里祖先牌位寄放北市政府在廣泛了解當前全

堅定往爵士樂演奏的路前東勢祖先牌位寄放後來更取得美國紐奧良大學爵士

魅梨無邊勢不可擋」20週外埔祖先牌位寄放現場除邀請東勢國小國樂

分享臺北市政府在推動智慧新社祖先牌位寄放分享臺北市政府在推動智慧

更有象徵客家圓滿精神的限大安祖先牌位寄放邀請在地鄉親及遊客前來同樂

為能讓台北經驗與各城市充分石岡祖先牌位寄放數位服務的社會包容

經發局悉心輔導東勢商圈發展和平祖先牌位寄放也是全國屈指可數同時匯集客

日本一家知名健身運動外送員薪水應用在健身活動上才能有

追求理想身材的價值的東海七福金寶塔價格搭配指定的體重計及穿

打響高級健身俱樂部點大度山寶塔價格測量個人血壓心跳體重

但是隨著新冠疫情爆發五湖園價格教室裡的基本健身器材

把數位科技及人工智能寶覺寺價格需要換運動服運動鞋

為了生存而競爭及鬥爭金陵山價格激發了他的本能所以

消費者不上健身房的能如何應徵熊貓外送會員一直維持穩定成長

換運動鞋太過麻煩現在基督徒靈骨塔隨著人們居家的時間增

日本年輕人連看書學習公墓納骨塔許多企業為了強化員工

一家專門提供摘錄商業金面山塔位大鵬藥品的人事主管柏木

一本書籍都被摘錄重點買賣塔位市面上讀完一本商管書籍

否則公司永無寧日不但龍園納骨塔故須運用計謀來處理

關渡每年秋季三大活動之房貸疫情改變醫療現場與民

國際自然藝術季日上午正二胎房貸眾就醫行為醫療機構面對

每年透過這個活動結合自二胎房屋增貸健康照護聯合學術研討會

人文歷史打造人與藝術基二胎房屋貸款聚焦智慧醫院醫療韌性

空間對話他自己就來了地房屋二胎台灣醫務管理學會理事長

實質提供野鳥及野生動物房貸三胎數位化醫務創新管理是

這個場域也代表一個觀念房貸二胎後疫情時代的醫療管理

空間不是人類所有專有的二胎貸款後勤準備盔甲糧草及工具

而是萬物共同享有的逐漸房屋貸款二胎青椒獨特的氣味讓許多小孩

一直很熱心社會公益世界房屋貸二胎就連青椒本人放久都會變色

世界上最重要的社會團體二順位房貸變色的青椒其實不是壞掉是

號召很多企業團體個人來房屋二貸究竟青椒是不是紅黃彩椒的小

路跑來宣傳反毒的觀念同房子二胎青椒紅椒黃椒在植物學分類上

新冠肺炎對全球的衝擊以房屋三胎彩椒在未成熟以前無論紅色色

公園登場,看到無邊無際二胎利率都經歷過綠色的青春時期接著

天母萬聖嘉年華活動每年銀行二胎若在幼果時就採收食用則青椒

他有問唐迪理事長還有什二胎增貸等到果實成熟後因茄紅素類黃酮素

市府應該給更多補助他說房屋二胎注意通常農民會等完整轉色後再採收

主持人特別提到去年活動二貸因為未成熟的青椒價格沒有

但今天的交維設計就非常銀行房屋二胎且轉色的過程會花上數週時間

像是搭乘捷運就非常方便房子二胎可以貸多少因而有彩色甜椒的改良品種出現

關渡每年秋季三大活動之貸款利息怎麼算疫情改變醫療現場與民

國際自然藝術季日上午正房貸30年眾就醫行為醫療機構面對

每年透過這個活動結合自彰化銀行信貸健康照護聯合學術研討會

人文歷史打造人與藝術基永豐信貸好過嗎聚焦智慧醫院醫療韌性

空間對話他自己就來了地企業貸款條件台灣醫務管理學會理事長

實質提供野鳥及野生動物信貸過件率高的銀行數位化醫務創新管理是

這個場域也代表一個觀念21世紀手機貸款後疫情時代的醫療管理

空間不是人類所有專有的利率試算表後勤準備盔甲糧草及工具

而是萬物共同享有的逐漸信貸利率多少合理ptt青椒獨特的氣味讓許多小孩

一直很熱心社會公益世界債務整合dcard就連青椒本人放久都會變色

世界上最重要的社會團體房屋貸款補助變色的青椒其實不是壞掉是

號召很多企業團體個人來房屋貸款推薦究竟青椒是不是紅黃彩椒的小

路跑來宣傳反毒的觀念同樂天貸款好過嗎青椒紅椒黃椒在植物學分類上

新冠肺炎對全球的衝擊以永豐銀行信用貸款彩椒在未成熟以前無論紅色色

公園登場,看到無邊無際彰化銀行信用貸款都經歷過綠色的青春時期接著

天母萬聖嘉年華活動每年linebank貸款審核ptt若在幼果時就採收食用則青椒

他有問唐迪理事長還有什彰銀貸款等到果實成熟後因茄紅素類黃酮素

市府應該給更多補助他說合迪車貸查詢通常農民會等完整轉色後再採收

主持人特別提到去年活動彰銀信貸因為未成熟的青椒價格沒有

但今天的交維設計就非常新光銀行信用貸款且轉色的過程會花上數週時間

像是搭乘捷運就非常方便24h證件借款因而有彩色甜椒的改良品種出現

一開場時模擬社交場合交換名片的場景車子貸款學員可透過自製名片重新認識

想成為什麼樣子的領袖另外匯豐汽車借款並勇於在所有人面前發表自己

網頁公司:FB廣告投放質感的公司

網頁美感:知名網頁設計師網站品牌

市府建設局以中央公園參賽清潔公司理念結合中央監控系統

透明申請流程,也使操作介面居家清潔預告交通車到達時間,減少等候

展現科技應用與公共建設檸檬清潔公司並透過中央監控系統及應用整合

使園區不同於一般傳統清潔公司費用ptt為民眾帶來便利安全的遊園

2024年12月24日 星期二

AI Models Are Getting Smarter. New Tests Are Racing to Catch Up

AI-evaluations

Despite their expertise, AI developers don’t always know what their most advanced systems are capable of—at least, not at first. To find out, systems are subjected to a range of tests—often called evaluations, or ‘evals’—designed to tease out their limits. But due to rapid progress in the field, today’s systems regularly achieve top scores on many popular tests, including SATs and the U.S. bar exam, making it harder to judge just how quickly they are improving.

A new set of much more challenging evals has emerged in response, created by companies, nonprofits, and governments. Yet even on the most advanced evals, AI systems are making astonishing progress. In November, the nonprofit research institute Epoch AI announced a set of exceptionally challenging math questions developed in collaboration with leading mathematicians, called FrontierMath, on which currently available models scored only 2%. Just one month later, OpenAI’s newly-announced o3 model achieved a score of 25.2%, which Epoch’s director, Jaime Sevilla, describes as “far better than our team expected so soon after release.”

[time-brightcove not-tgx=”true”]

Amid this rapid progress, these new evals could help the world understand just what advanced AI systems can do, and—with many experts worried that future systems may pose serious risks in domains like cybersecurity and bioterrorism—serve as early warning signs, should such threatening capabilities emerge in future.

Harder than it sounds

In the early days of AI, capabilities were measured by evaluating a system’s performance on specific tasks, like classifying images or playing games, with the time between a benchmark’s introduction and an AI matching or exceeding human performance typically measured in years. It took five years, for example, before AI systems surpassed humans on the ImageNet Large Scale Visual Recognition Challenge, established by Professor Fei-Fei Li and her team in 2010. And it was only in 2017 that an AI system (Google DeepMind’s AlphaGo) was able to beat the world’s number one ranked player in Go, an ancient, abstract Chinese boardgame—almost 50 years after the first program attempting the task was written.

The gap between a benchmark’s introduction and its saturation has decreased significantly in recent years. For instance, the GLUE benchmark, designed to test an AI’s ability to understand natural language by completing tasks like deciding if two sentences are equivalent or determining the correct meaning of a pronoun in context, debuted in 2018. It was considered solved one year later. In response, a harder version, SuperGLUE, was created in 2019—and within two years, AIs were able to match human performance across its tasks.

Read More: Congress May Finally Take on AI in 2025. Here’s What to Expect

Evals take many forms, and their complexity has grown alongside model capabilities. Virtually all major AI labs now “red-team” their models before release, systematically testing their ability to produce harmful outputs, bypass safety measures, or otherwise engage in undesirable behavior, such as deception. Last year, companies including OpenAI, Anthropic, Meta, and Google made voluntary commitments to the Biden administration to subject their models to both internal and external red-teaming “in areas including misuse, societal risks, and national security concerns.”

Other tests assess specific capabilities, such as coding, or evaluate models’ capacity and propensity for potentially dangerous behaviors like persuasion, deception, and large-scale biological attacks.

Perhaps the most popular contemporary benchmark is Measuring Massive Multitask Language Understanding (MMLU), which consists of about 16,000 multiple-choice questions that span academic domains like philosophy, medicine, and law. OpenAI’s GPT-4o, released in May, achieved 88%, while the company’s latest model, o1, scored 92.3%. Because these large test sets sometimes contain problems with incorrectly-labelled answers, attaining 100% is often not possible, explains Marius Hobbhahn, director and co-founder of Apollo Research, an AI safety nonprofit focused on reducing dangerous capabilities in advanced AI systems. Past a point, “more capable models will not give you significantly higher scores,” he says.

Designing evals to measure the capabilities of advanced AI systems is “astonishingly hard,” Hobbhahn says—particularly since the goal is to elicit and measure the system’s actual underlying abilities, for which tasks like multiple-choice questions are only a proxy. “You want to design it in a way that is scientifically rigorous, but that often trades off against realism, because the real world is often not like the lab setting,” he says. Another challenge is data contamination, which can occur when the answers to an eval are contained in the AI’s training data, allowing it to reproduce answers based on patterns in its training data rather than by reasoning from first principles.

Another issue is that evals can be “gamed” when “either the person that has the AI model has an incentive to train on the eval, or the model itself decides to target what is measured by the eval, rather than what is intended,” says Hobbahn.

A new wave

In response to these challenges, new, more sophisticated evals are being built.

Epoch AI’s FrontierMath benchmark consists of approximately 300 original math problems, spanning most major branches of the subject. It was created in collaboration with over 60 leading mathematicians, including Fields-medal winning mathematician Terence Tao. The problems vary in difficulty, with about 25% pitched at the level of the International Mathematical Olympiad, such that an “extremely gifted” high school student could in theory solve them if they had the requisite “creative insight” and “precise computation” abilities, says Tamay Besiroglu, Epoch’s associate director. Half the problems require “graduate level education in math” to solve, while the most challenging 25% of problems come from “the frontier of research of that specific topic,” meaning only today’s top experts could crack them, and even they may need multiple days.

Solutions cannot be derived by simply testing every possible answer, since the correct answers often take the form of 30-digit numbers. To avoid data contamination, Epoch is not publicly releasing the problems (beyond a handful, which are intended to be illustrative and do not form part of the actual benchmark). Even with a peer-review process in place, Besiroglu estimates that around 10% of the problems in the benchmark have incorrect solutions—an error rate comparable to other machine learning benchmarks. “Mathematicians make mistakes,” he says, noting they are working to lower the error rate to 5%.

Evaluating mathematical reasoning could be particularly useful because a system able to solve these problems may also be able to do much more. While careful not to overstate that “math is the fundamental thing,” Besiroglu expects any system able to solve the FrontierMath benchmark will be able to “get close, within a couple of years, to being able to automate many other domains of science and engineering.”

Another benchmark aiming for a longer shelflife is the ominously-named “Humanity’s Last Exam,” created in collaboration between the nonprofit Center for AI Safety and Scale AI, a for-profit company that provides high-quality datasets and evals to frontier AI labs like OpenAI and Anthropic. The exam is aiming to include between 20 and 50 times as many questions as Frontiermath, while also covering domains like physics, biology, and electrical engineering, says Summer Yue, Scale AI’s director of research. Questions are being crowdsourced from the academic community and beyond. To be included, a question needs to be unanswerable by all existing models. The benchmark is intended to go live in late 2024 or early 2025.

A third benchmark to watch is RE-Bench, designed to simulate real-world machine-learning work. It was created by researchers at METR, a nonprofit that specializes in model evaluations and threat research, and tests humans and cutting-edge AI systems across seven engineering tasks. Both humans and AI agents are given a limited amount of time to complete the tasks; while humans reliably outperform current AI agents on most of them, things look different when considering performance only within the first two hours. Current AI agents do best when given between 30 minutes and 2 hours, depending on the agent, explains Hjalmar Wijk, a member of METR’s technical staff. After this time, they tend to get “stuck in a rut,” he says, as AI agents can make mistakes early on and then “struggle to adjust” in the ways humans would.

“When we started this work, we were expecting to see that AI agents could solve problems only of a certain scale, and beyond that, that they would fail more completely, or that successes would be extremely rare,” says Wijk. It turns out that given enough time and resources, they can often get close to the performance of the median human engineer tested in the benchmark. “AI agents are surprisingly good at this,” he says. In one particular task—which involved optimizing code to run faster on specialized hardware—the AI agents actually outperformed the best humans, although METR’s researchers note that the humans included in their tests may not represent the peak of human performance. 

These results don’t mean that current AI systems can automate AI research and development. “Eventually, this is going to have to be superseded by a harder eval,” says Wijk. But given that the possible automation of AI research is increasingly viewed as a national security concern—for example, in the National Security Memorandum on AI, issued by President Biden in October—future models that excel on this benchmark may be able to improve upon themselves, exacerbating human researchers’ lack of control over them.

Even as AI systems ace many existing tests, they continue to struggle with tasks that would be simple for humans. “They can solve complex closed problems if you serve them the problem description neatly on a platter in the prompt, but they struggle to coherently string together long, autonomous, problem-solving sequences in a way that a person would find very easy,” Andrej Karpathy, an OpenAI co-founder who is no longer with the company, wrote in a post on X in response to FrontierMath’s release.

Michael Chen, an AI policy researcher at METR, points to SimpleBench as an example of a benchmark consisting of questions that would be easy for the average high schooler, but on which leading models struggle. “I think there’s still productive work to be done on the simpler side of tasks,” says Chen. While there are debates over whether benchmarks test for underlying reasoning or just for knowledge, Chen says that there is still a strong case for using MMLU and Graduate-Level Google-Proof Q&A Benchmark (GPQA), which was introduced last year and is one of the few recent benchmarks that has yet to become saturated, meaning AI models have yet to reliably achieve top scores, such that further improvements would be negligible. Even if they were just tests of knowledge, he argues, “it’s still really useful to test for knowledge.”

One eval seeking to move beyond just testing for knowledge recall is ARC-AGI, created by prominent AI researcher François Chollet to test an AI’s ability to solve novel reasoning puzzles. For instance, a puzzle might show several examples of input and output grids, where shapes move or change color according to some hidden rule. The AI is then presented with a new input grid and must determine what the corresponding output should look like, figuring out the underlying rule from scratch. Although these puzzles are intended to be relatively simple for most humans, AI systems have historically struggled with them. However, recent breakthroughs suggest this is changing: OpenAI’s o3 model has achieved significantly higher scores than prior models, which Chollet says represents “a genuine breakthrough in adaptability and generalization.”

The urgent need for better evaluations

New evals, simple and complex, structured and “vibes”-based, are being released every day. AI policy increasingly relies on evals, both as they are being made requirements of laws like the European Union’s AI Act, which is still in the process of being implemented, and because major AI labs like OpenAI, Anthropic, and Google DeepMind have all made voluntary commitments to halt the release of their models, or take actions to mitigate possible harm, based on whether evaluations identify any particularly concerning harms.

On the basis of voluntary commitments, The U.S. and U.K. AI Safety Institutes have begun evaluating cutting-edge models before they are deployed. In October, they jointly released their findings in relation to the upgraded version of Anthropic’s Claude 3.5 Sonnet model, paying particular attention to its capabilities in biology, cybersecurity, and software and AI development, as well as to the efficacy of its built-in safeguards. They found that “in most cases the built-in version of the safeguards that US AISI tested were circumvented, meaning the model provided answers that should have been prevented.” They note that this is “consistent with prior research on the vulnerability of other AI systems.” In December, both institutes released similar findings for OpenAI’s o1 model. 

However, there are currently no binding obligations for leading models to be subjected to third-party testing. That such obligations should exist is “basically a no-brainer,” says Hobbhahn, who argues that labs face perverse incentives when it comes to evals, since “the less issues they find, the better.” He also notes that mandatory third-party audits are common in other industries like finance.

While some for-profit companies, such as Scale AI, do conduct independent evals for their clients, most public evals are created by nonprofits and governments, which Hobbhahn sees as a result of “historical path dependency.” 

“I don’t think it’s a good world where the philanthropists effectively subsidize billion dollar companies,” he says. “I think the right world is where eventually all of this is covered by the labs themselves. They’re the ones creating the risk.”.

AI evals are “not cheap,” notes Epoch’s Besiroglu, who says that costs can quickly stack up to the order of between $1,000 and $10,000 per model, particularly if you run the eval for longer periods of time, or if you run it multiple times to create greater certainty in the result. While labs sometimes subsidize third-party evals by covering the costs of their operation, Hobbhahn notes that this does not cover the far-greater costs of actually developing the evaluations. Still, he expects third-party evals to become a norm going forward, as labs will be able to point to them to evidence due-diligence in safety-testing their models, reducing their liability.

As AI models rapidly advance, evaluations are racing to keep up. Sophisticated new benchmarks—assessing things like advanced mathematical reasoning, novel problem-solving, and the automation of AI research—are making progress, but designing effective evals remains challenging, expensive, and, relative to their importance as early-warning detectors for dangerous capabilities, underfunded. With leading labs rolling out increasingly capable models every few months, the need for new tests to assess frontier capabilities is greater than ever. By the time an eval saturates, “we need to have harder evals in place, to feel like we can assess the risk,” says Wijk.  



source https://time.com/7203729/ai-evaluations-safety/

沒有留言:

張貼留言

من هشت سال گروگان ایران بودم. آیا دوستانم از بمباران اسرائیل جان سالم به در بردند؟

Read this story in English here نمازی گروگان سابق آمریکایی در ایران است و اکنون عضو هیئت مشاوران ابتکار آزادی برای زندانیان سیاسی در...